FY2018 Integrated Strategic Transient Experiment Plan (ISTEP)

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance.

Idaho National Laboratory

FY2018 INTEGRATED STRATEGIC TRANSIENT EXPERIMENT PLAN (ISTEP)

Plan

Identifier:PLN-5318Revision:2Effective Date:03/19/18Page: 2 of 10

TREAT

eCR Number: 654539

Manual: TREAT Plans

Entire Document change

REVISION LOG

Rev.	Date	Affected Pages	Revision Description
0	02/06/17	All	See eCR 647457. New issue.
1	02/15/17	All	See eCR 647578. Revision.
2	03/19/18	All	See eCR 654539. Revision

Idaho National Laboratory			
FY2018 INTEGRATED STRATEGIC	Identifier:	PLN-5318	
TRANSIENT EXPERIMENT PLAN	Revision:	2	
(ISTEP)	Effective Date:	03/19/18	Page: 3 of 10

SUMMARY

The Integrated Strategic Transient Experiment Plan (ISTEP) purpose is to describe the FY18 Annual Test Plan, outyear projections of transient experiment program customers testing campaigns, and associated integrated schedule of preparation and post irradiation examination activities.

Idaho National Laboratory			
FY2018 INTEGRATED STRATEGIC	Identifier:	PLN-5318	
TRANSIENT EXPERIMENT PLAN	Revision:	2	
(ISTEP)	Effective Date:	03/19/18	Page: 4 of 10

CONTENTS

SUM	MARY	3
ACRO	ONYMS	5
1.	FY18 ANNUAL TEST PLAN	6
2.	SUMMARY OF TRANSIENT EXPERIMENT PROGRAM CUSTOMERS	7
3.	FUNDING ASSUMPTIONS	9
4.	THE INTEGRATED STRATEGIC TRANSIENT EXPERIMENT PLAN	9
5.	SCHEDULES 1	0

TABLES

Table 1. FY18 Transient Experiments.	6
--------------------------------------	---

Idaho Nationa	l Laboratory
---------------	--------------

FY2018 INTEGRATED STRATEGIC TRANSIENT EXPERIMENT PLAN (ISTEP)

Identifier:	PLN-5318
Revision:	2
Effective Date:	03/19/18

Page: 5 of 10

ACRONYMS

ATF	Accident Tolerant Fuel
ASTRID	Advanced Sodium Technological Reactor for Industrial Demonstration
CEA	Commissariat à l'Energie Atomique (French Atomic Energy Commission)
CRADA	Cooperative Research and Development Agreement
CINDI	Characterization-scale Instrumented Neutron Dose Irradiation module
CINR	Consolidated Innovative Nuclear Research
DNB	departure from nucleate boiling
DOE	U.S. Department of Energy
EBR-II	Experimental Breeder Reactor II
FCRD	Fuel Cycle Research and Development
FFTF	Fast Flux Test Facility
GAIN	Gateway for Accelerated Innovation in Nuclear
HFEF	Hot Fuel Examination Facility
INL	Idaho National Laboratory
IRP	Integrated Research Project
ISTEP	Integrated Strategic Transient Experiment Plan
JAEA	Japan Atomic Energy Agency
LOCA	loss-of-coolant accident
MARCH	Minimal Activation Retrievable Capsule Holder
MFF	Mechanistic Fuel Failure
NASA	National Aeronautics and Space Administration
NEAMS	Nuclear Energy Advanced Modeling and Simulation
NEET	Nuclear Energy Enabling Technology
NEUP	Nuclear Energy University Program
NS&T	Nuclear Science & Technology
NSUF	Nuclear Science User Facilities
PIE	Post Irradiation Examination
POL	INL Policy document
RIA	Reactivity Initiated Accident
SETH	Separate Effects Test Holder module
SERTTA	Static Environment Rodlet Transient Test Apparatus
TITAN-C1	Transient Irradiation TerraPower Advanced Nuclear fuel, initial capsules tests
THOR	Temperature Heat-sink Overpower Response module
TREAT	Transient Reactor Test Facility
TWERL	TREAT Water Environment Recirculating Loop

FY2018 INTEGRATED STRATEGIC TRANSIENT EXPERIMENT PLAN (ISTEP)

Identifier:	PLN-5318	
Revision:	2	
Effective Date:	03/19/18	Page: 6 of 10

1. FY18 ANNUAL TEST PLAN

FY18 will emphasize execution of the first experiment campaigns, projected to start as early as April of 2018. To ensure effective utilization of the reactor, a full experimental campaign is planned. The following table includes committed/concurrent experiments that represent an anticipated full utilization for the reactor for FY18. Contingent experiments will be available to achieve full reactor utilization in the event that the committed experiment scope is restrained or is achieved with less transients than currently anticipated.

This experimental regime is challenging for the first partial year of operations and will provide good operating experience, as well as a strong experimental base for future years.

Experiment Scope		Start-ups*			
	Committed Experiments				
ATF-3 Transient Prescription Studies	Development of transient prescriptions and energy deposition measurement address relevant transients for future water- bearing ATF RIA-type irradiations.	10			
Narrow Pulse Width Testing	Development of transient prescriptions to determine minimum pulse width with current TREAT configuration.	10			
LOCA Testing	Development of transient prescriptions to demonstrate capability to simulate LOCA conditions.	5			
ATF-SETH, Fresh Fuel Test Series	ATF fresh fuel irradiations in an inert gas environment using the SETH capsules in the MARCH vehicle. Approximately five rodlets (one per capsule per test), at varying specimen energy levels.	15			
IRP Instrument Testing	Measurement and testing with in-core instrumentation to validate testing in the MITR.	10			
Radiography Requalification	Testing to restore Neutron Radiography capability. Includes qualifying state of the art digital equipment as well as qualifying radiographers.	10			
	Concurrent Advanced Instrumentation Testing				
In-Core Instrumentation	Measurement and testing with in-core instrumentation including on-line instrumentation, radiation sensors, fiber optic sensors, and evaluation of Linear Variable Differential Transducers for radiation environments.	Concurrent with other prescribed operations			
Hodoscope Restoration	Restore the Hodoscope to operation	Concurrent with other prescribed operations			
	Contingent Experiments				
Physics Testing/ Benchmark	Continuation of reactor physics tests to re-validate the historic TREAT physics codes and further develop the new NEAMS multi-physics code suite, including advanced instrumentation testing and calibration	As schedule allows			

Table 1. FY18 Reactor Utilization and Experiment Activities.

Idaho National Laboratory			
FY2018 INTEGRATED STRATEGIC	Identifier:	PLN-5318	
TRANSIENT EXPERIMENT PLAN	Revision:	2	
(ISTEP)	Effective Date:	03/19/18	Page: 7 of 10

*Approximate number of reactor start-ups for reactor safety, physics, calibrations, and experiments. This number will vary depending on final experiment and operating plans.

2. SUMMARY OF TRANSIENT EXPERIMENT PROGRAM CUSTOMERS

A description of the currently anticipated experiment customers is summarized below. This list is currently under development as customer's needs iterate experiment development times, and available funding. NASA and Homeland Security have also expressed interest, but specific test designs are still being developed at this time.

Advanced Light Water Reactor Fuel Testing

The current efforts are focused on supporting the Accident Tolerant Fuel (ATF) mission. However, there are multiple programs dependent on this experimental infrastructure and early test data, such as the FY16 separate effects IRP awarded to Utah State University and a potential industry led NSUF proposal to study fuel safety criteria for very high burnup fuel. The assumed scope at the beginning of the ATF project included three experiment types, however an additional experiment type was added using the MARCH vehicle resulting in four experiment campaigns prior to 2022:

- Fresh fuel MARCH static capsules (2018-2019)
- Fresh fuel Multi-SERTTA static capsules (2019-2020)
- Irradiated fuel in Super-SERTTA static capsules (2020-2021)
- Irradiated fuel in TWERL flowing water loops (2021-2022).

This testing was the primary schedule driver for the resumption of transient testing, and by default is the highest priority. This work directly supports multiple congressional milestones relating to accident tolerant fuel development.

Multi-Physics Code Validation

The primary work scope in this area is associated with codes capable of predicting the response of tightly coupled, multi-physics systems that are being developed under the NEAMS program. TREAT is an ideal platform for development, validation, and ultimately use of these codes. These codes are expected to accelerate the overall development life-cycle for advanced nuclear fuel technology. In-pile transient instruments and benchmark cases are being developed under various programs (IRP, NEUP, NSUF, and NEET).

The validation activities in the TREAT reactor will be conducted as follows:

- 2018-2020: Reactor response models will be validated through characterization of reactor behavior under prescribed transients
- 2018-2020: Reactor-experiment coupling models will be validated using experiment calibration test data

Idaho National Laboratory			
FY2018 INTEGRATED STRATEGIC	Identifier:	PLN-5318	
TRANSIENT EXPERIMENT PLAN	Revision:	2	
(ISTEP)	Effective Date:	03/19/18	Page: 8 of 10

• 2019-TBD: Fuel performance models under transient conditions will be validated using experiment results.

Fast Reactor Fuels Testing

Fast reactor testing needs are being clarified through technical interaction with FCRD Advanced Fuels, TerraPower, CEA Astrid, JAEA fast reactor programs, and the GAIN initiative. It is clear there is significant need and interest in this area, but plans are not as well developed as the ATF program. TerraPower provided a conceptual test plan that is currently being refined under a CRADA for the TITAN-C1 test campaign:

- Phase 1 (2019-2023): Separate effects testing of advanced fuel concepts using the THOR module of the MARCH system.
- Phase 2 (2021-2025): Assessment of base fuel design in Mk IV Na Loop using fresh and archived pre-irradiated EBR-II and FFTF-MFF fuel pins
- Phase 3 (2024-2025): Assessment of BOR-60 irradiated fuel pins in Mk IV Na Loop.

Collaborators at CEA, who have a strong interest due to the ASTRID reactor fuel development efforts, have suggested similar strategies and timeframes.

Separate Effects Testing for Fuel Safety Science

A variety of separate effects studies on nuclear fuel behavior are possible with TREAT. Early high impact test designs are being developed through interaction with existing DOE program missions and future competitive awards through DOE Consolidated Innovative Nuclear Research (CINR) solicitations.

Evaluation of Transient Critical Heat Flux is an internal experiment that will be planned and conducted by INL staff. This experiment has very important elements relating to the fundamental understanding of physical properties and phenomena leading to departure from nucleate boiling (DNB), in addition to more accurately characterizing the heat transport under DNB conditions. This is of crucial interest to the fuels development and regulatory entities, and strong international interest has been expressed. Recent and ongoing studies being conducted under DOE and international funding using non-nuclear heating and advanced modeling and simulation have demonstrated that in-pile testing is necessary to fully investigate this behavior, which has significant impact on both reactor operations and safety.

In-Core Instrumentation Measurement and Testing

In-core instrumentation plays a crucial supporting role in the objectives of transient irradiation testing. The development and ultimate qualification of in-core instrumentation requires significant testing in the unique radiation environment that the TREAT facility provides. Frequent and flexible access to measurements in the TREAT facility reactor core is key to the success of in-core instrumentation, the transient testing experiments program, and the TREAT facility. These needs are also envisioned to support general in-pile instrumentation development beyond the specific goals of the transient testing programs.

The deployment of independent in-core instrumentation includes the following:

• Concurrent testing accompanying ongoing reactor operations including experiments with independent objectives;

Idaho National Laboratory			
FY2018 INTEGRATED STRATEGIC	Identifier:	PLN-5318	
TRANSIENT EXPERIMENT PLAN	Revision:	2	
(ISTEP)	Effective Date:	03/19/18	Page: 9 of 10

- Instrumentation experiments with dedicated reactor prescriptions and support likely to include international collaborators;
- Instrumentation supporting experiments described in other categories above and below.

3. FUNDING ASSUMPTIONS

The Transient Experimental Schedule proposed is reliant on FY18-22 funding. The reactor base operations are adequately funded under Integrated Facility Management. The scientific infrastructure capability funding needs are under development. Funding for experiments necessary to accomplish the ISTEP is described in POL-150, Pricing Policy for Transient Reactor Test Facility Irradiation Services.

The work scope described in the ISTEP reflects a developing transient testing program. As reactor operations and initiation of experiments approach, it is clear that the complexity and amount of internal and external interfaces will rapidly escalate. To ensure the appropriate management of the transient experiment program, it is recommended that a consolidated program structure be established. This program will systematically develop an integrated and detailed plan for all of these new activities to enable timely and efficient execution. The structure and process used for the other major NE programs provides a template for success in this area.

4. THE INTEGRATED STRATEGIC TRANSIENT EXPERIMENT PLAN

The ISTEP Reactor Utilization and Transient Experiment Schedule are on the following page. The Reactor Utilization Schedule is focused on TREAT reactor utilization, while the Transient Experiment Schedule integrates the projected experiments as noted in the Transient Experiment Programs including programmatic development, and associated required scientific and enabling infrastructure development.

The FY-18 ISTEP Reactor Utilization and Transient Experiment Schedule is mainly populated with tasks supporting ATF testing, TREAT physics testing, capability testing, and advanced instrumentation development. The ISTEP will be reviewed quarterly and priorities set by representatives from TREAT and NS&T. Current experiments are all managed through NS&T, thus priority conflicts are easily resolved. In the future if scheduling and prioritization becomes an issue, a TREAT Users Working Group will be established made up of representatives of the respective users including, NS&T, future science leads, TREAT Operations and Engineering, as well as MFC facilities that will set the schedule priorities.

Idaho National Laboratory

FY2018 INTEGRATED STRATEGIC	Identifier:	PLN-5318	
TRANSIENT EXPERIMENT PLAN	Revision:	2	
(ISTEP)	Effective Date:	03/19/18	Page: 10 of 10

5. SCHEDULE

ISTEP Reactor Utilization and Transient Experiment Schedule										
Activity ID	Activity Name		Org Dur		2018					2
LONG RAN	IGE FORECAST		382d	Mar Apr May	Jun Jul	Aug Sep	Oct Nov Dec	Jan Feb	Mar Ap	r May Jun
NORMALC	PERATIONS		382d							
E1195	ADVANCED IN-CORE INSTRUMENTATION (CONCURRENT TESTING DP-129)		113d							
E1235	HODOSCOPE RECOVERY (CONCURRENT WITH FY18 REACTOR OPERATIONS)		113d							
P1005	RADIOGRAPHY - FLUX MEASURE - GOLD FOIL*		1d							
P1010	TREAT FUEL ASSEMBLY WORTH MEASUREMENTS" (4SS)		14d							
P1025	RADIOGRAPHY - MULTI FOIL*		1d	1						
E1100	ATF-3-1 TRANSIENT PRESCRIPTION TESTS (1SS. 5T)		12d							
P1075	RADIOGRAPHY QUALIFICATION (5 SETS OF MULTIPLE SHOTS)		8d							
P1070	REACTIVITY COMPUTER SO TEST- PREPARATIONS		4d							
E1105	TEST ADVANCED INSTRUMENTATION WITH IRP CAP SULE EXPERIMENT IN M8 CAL (1SS, 4T)		8d							
E1165	NARROW PULSE WIDTH TRANSIENTS (8T)		12d							
E1185	LOCA SHAPED TRANSIENTS - PART I (2T)		4d							
E1225	NEUTRON DETECTOR/OPTICAL FIBER SENSORS (CONCURRENT INSTRUMENTATION TESTING DP-129)		4d		-					
E1130	RECONFIGURE CORE TO SUPPORT ATE TESTING IN MARCH SYSTEM		8d		_					
E1115	CORE CHARACTERIZATION TO SUPPORT TESTING IN MARCH SYSTEM - (ROD WORTH HEAT BALANCE TI	I-1 TI-2 & TI-3)	12d							
P1085	REACTIVITY COMPLITER SO TEST- VALIDATION	- 1, 12 2, 4 12 0,	4d							
P1235	RADIOGRAPHY SHOT FOR ATE SETHA TRANSIENT		14			<u>ت</u>				
F1125			84							
E1125			bu			_				
E1130			84							
E1170			64							
E 11 76			64							
E1175			64				_			
E1160	STEADY STATE IDRADIATIONS TO SUDDORT MATERIALS USING CINDLEYDERIMENTS/SIM II ATIONS IN MAR		164							
E1215			44							
B1020			224				_			
P1015			104				-	_	_	
F1013			124					-	_	
E 1145			164							
E1140			194							
B1030			204							
P1030			200							
P 1035			404							
P1040		ATTOP, BUR POWER)	164							
PI003			2994							
PLANT MA	INTERANCE		2000							
M1025	ANNU AL TECH SPEC CALIBRATIONS, DM (PTC DMT Comp and Control Pod & APC 9, 2019		00	-	-					
M1020	MONTHLY OLIADTEDLY & ANNUAL DIRE (200 OTD 2010)**		44			-				
M1020			40				_			
M1030			ou					-		
M1040	MONTHLY OLIARTERLY & ANNUAL INSPECTIONS - FMS (2013)		00 10d					_		
M1045			164					-		
M1045			164							
M1055	ANNI 14 TECH SEC CALIBRATIONS, DM (PTS, DMT, Comp. and Control Pod. 8 APCS) 2040		164							
M1060			160							
WIGOU			100							
Actu	al Work • Milestone NO	TES:	10 1020 Autors	op same man						
Rem	naining Work 6 Complete 1 - *	*These activities can be	delayed to	accommodate develo	ping customers.		1			
Criti	cal Remaining Work 2 - *	These activities includ	ie Piant He	cauti improvements"	as mey become	ready for im	prementation.			

